|
Dodd-Bullough-Mikhailov equation is a nonlinear partial differential equation introduced by Roger Dodd, Robin Bullough, and Alexander Mikhailov.〔李志斌编著 《非线性数学物理方程的行波解》 第105-107页,科学出版社 2008(Chinese)〕 In 2005 Mathematician Wazwar combined the Tzitzeica equation with Dodd-Bullough-Mikhailov equation into Tzitz´eica-Dodd-Bullough-Mikhailov equation.〔A.-M. Wazwaz, “The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitz´eica- Dodd-Bullough equations,” Chaos, Solitons and Fractals, vol. 25,no. 1, pp. 55–63, 2005.〕 Dodd-Bullough-Mikhailov equation has traveling wave solutions. ==References== 〔 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dodd-Bullough-Mikhailov equation」の詳細全文を読む スポンサード リンク
|